Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil

نویسندگان

  • Tiberiu Frentiu
  • Michaela Ponta
  • Raluca Hategan
چکیده

BACKGROUND The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. RESULTS The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. CONCLUSIONS High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion Pair Dispersive Liquid-Liquid Microextraction for the Determination of Trace Amounts of Copper(II) in Soil, Multivitamin Tablet, Tea and Water Samples Using Flame Atomic Absorption Spectrometry

Ion pair dispersive liquid- liquid microextraction (IP-DLLME) method combined with flame atomic absorption spectrometry was proposed for the determination of trace amounts of copper(II). By using pyrocatechol violet as chelating agent and cetyltrimethyl ammonium bromide as an ion pairing agent, the trace amount of copper(II) was extracted in chloroform. The factors influencing the formation cop...

متن کامل

Dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry for determination trace amount of cobalt in water samples

An efficient, rapid, simple, and highly selective dispersive liquid–liquid microextraction basedon solidification of floating organic drop (DLLME-SFOD), combined with flame atomicabsorption spectrometry was developed for preconcentration and determination of trace amountsof cobalt in water samples. In this method, an appropriate mixture of acetone and1-undecanol was injected rapidly into the aq...

متن کامل

Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Drop Combined with Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Thallium(III) in Water Samples

Dispersive Liquid-Liquid MicroExtraction technique based on Solidification of a Floating Organic drop (DLLME-SFO) combined with flame atomic absorption spectrometry was developed for determination of thallium in water sample. An appropriate mixture of acetone and 1-undecanol was rapidly injected into an aqueous sample containing TlCl4- which forms an ion pair with bril...

متن کامل

The determination of Cu2+, Fe3+, Zn2+ and Pb2+ in real samples by flame atomic absorption spectrometry after their separation- preconcentration on 2-(2-nitrophenylazo)- naphthalen-1-ol loaded on activated carbon

A sensitive and simple method for simultaneous preconcentration of trace heavy metal ions in some cerealand vegetable samples has been reported. The method is based on the adsorption of Cu2+, Fe3+, Zn2+ and Pb2+on 2-(2-nitro-phenylazo)-naphthalen-1-ol (NPN) loaded on activated carbon (AC). The adsorbed metals onactivated carbon were eluted using 3 ml 4 mol L−1 nitric acid. The influences of the...

متن کامل

Extraction and Determination of Heavy Metals Using Silver Coated Magnetic Nanoparticles and Flame Atomic Absorption Spectrometry

A rapid, simple and sensitive magnetic solid phase extraction (MSPE) method was developed for the pre-concentration and determination of copper and cadmium ions. In this study, modified Fe3O4@Ag nanoparticles were synthesized and then ligand 2-isonicotinoyl hydrazine carbodithiolate (ITHCDT) was bonded to silver due to the formation of covalent bond of S-Ag. In this method, copper and cadmium i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013